Bandgap Engineering of Ternary ε-InSe1−xSx and ε-InSe1−yTey Single Crystals for High-Performance Electronics and Optoelectronics

Qiaoyan Hao, Huan Yi, Jidong Liu, Yi Wang, Jiewei Chen, Xinmao Yin, Chi Sin Tang, Dianyu Qi, Haibo Gan, Andrew T.S. Wee, Yang Chai, Wenjing Zhang

Research output: Journal article publicationJournal articleAcademic researchpeer-review

6 Citations (Scopus)

Abstract

Alloying offers an efficient strategy to tune the bandgap of two-dimensional (2D) layered materials, enabling them to tailor the optical and electronic attributes without compromising the structural integrity. Here the authors report the synthesis of a series of ternary InSe1−xSx and InSe1−yTey alloys possessing ε-polymorph and single crystalline structure. Both the photoluminescence and Raman spectra of multilayer InSe1−xSx and InSe1−yTey demonstrate that an effective modulation of bandgap and concomitant optical properties is achieved by tuning the alloy compositions, consistent with density functional theory calculations. Field-effect transistors fabricated from the multilayer alloys on SiO2 dielectric substrates display electron field-effect mobilities of up to ≈127 cm2 V−1 s−1. All the multilayer alloy devices show a high current on/off ratio of ≈108. When fabricated into photodetectors, multilayer InSe0.9S0.1 and InSe0.9Te0.1 exhibit maximum photoresponsivities of 5.4 × 105 and 7.7 × 104 A W−1, respectively. Moreover, the InSe1−yTey alloys are able to expand the photoresponse range into 1250 nm due to the bandgap narrowing upon Te alloying. This work sheds light on rationally designing 2D layered InSe with tunable bandgaps via alloying, and demonstrates their promising applications in electronics and optoelectronics.

Original languageEnglish
Article number2200063
JournalAdvanced Optical Materials
Volume10
Issue number13
DOIs
Publication statusPublished - 20 Apr 2022

Keywords

  • alloying
  • bandgap engineering
  • electron mobility
  • indium selenide
  • photodetectors

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Bandgap Engineering of Ternary ε-InSe1−xSx and ε-InSe1−yTey Single Crystals for High-Performance Electronics and Optoelectronics'. Together they form a unique fingerprint.

Cite this