Automatic lane change maneuver in dynamic environment using model predictive control method

Zhaolun Li, Jingjing Jiang, Wen Hua Chen

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

12 Citations (Scopus)

Abstract

The lane change maneuver is one of the typical maneuvers in various driving situations. Therefore the automatic lane change function is one of the key functions for autonomous vehicles. Many researches have been conducted in this field. Most existing work focused on the solutions for the static environment and assume that the surrounding vehicles are running at constant speeds. However, in reality, if not all the vehicles on the road are fully autonomous, the situation could be much more complicated and the ego vehicle has to deal with the dynamic environment. This paper proposes a Model Predictive Control (MPC)-based method to achieve automatic lane change in a dynamic environment. A two-wheel dynamic bicycle model, which combines the longitudinal and lateral motion of the ego vehicle, together with a utility function, which helps to automatically determine the target lane have been used in the algorithm. The simulation results have demonstrated the capability of the proposed algorithm in a dynamic environment.

Original languageEnglish
Title of host publication2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2384-2389
Number of pages6
ISBN (Electronic)9781728162126
DOIs
Publication statusPublished - 24 Oct 2020
Event2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020 - Las Vegas, United States
Duration: 24 Oct 202024 Jan 2021

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020
Country/TerritoryUnited States
CityLas Vegas
Period24/10/2024/01/21

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Automatic lane change maneuver in dynamic environment using model predictive control method'. Together they form a unique fingerprint.

Cite this