Automated segmentation of overlapping cytoplasm in cervical smear images via contour fragments

Youyi Song, Jing Qin, Baiying Lei, Kup Sze Choi

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

10 Citations (Scopus)

Abstract

We present a novel method for automated segmentation of overlapping cytoplasm in cervical smear images based on contour fragments. We formulate the segmentation problem as a graphical model, and employ the contour fragments generated from cytoplasm clump to construct the graph. Compared with traditional methods that are based on pixels, our contour fragment-based solution can take more geometric information into account and hence generate more accurate prediction of the overlapping boundaries. We further design a novel energy function for the graph, and by minimizing the energy function, fragments that come from the same cytoplasm are selected into the same set. To construct the energy function, our fragments-based data term and pairwise term are measured from the spatial relation and shape prior, which offer more geometric information for the occluded boundary inference. Afterwards, occluded boundaries are inferred using the minimal path model, in which shape of each individual cytoplasm is reconstructed on the selected fragments set. Constructed shape is used as a constraint to locate the searching area, and curvature regulation is enforced to promote the smoothness of inference result. The inference result, in turn, is used as the shape prior to construct a high-level shape regulation energy term of the built graph, and then graph energy is updated. In other words, fragments selection and occluded boundary inference are iterative processed; this interaction makes more potential shape information accessible. Using two cervical smear datasets, the performance of our method is extensively evaluated and compared with that of the state-of-the-art approaches; the results show the superiority of the proposed method.

Original languageEnglish
Title of host publication32nd AAAI Conference on Artificial Intelligence, AAAI 2018
PublisherAAAI press
Pages168-175
Number of pages8
ISBN (Electronic)9781577358008
Publication statusPublished - 1 Jan 2018
Event32nd AAAI Conference on Artificial Intelligence, AAAI 2018 - New Orleans, United States
Duration: 2 Feb 20187 Feb 2018

Publication series

Name32nd AAAI Conference on Artificial Intelligence, AAAI 2018

Conference

Conference32nd AAAI Conference on Artificial Intelligence, AAAI 2018
Country/TerritoryUnited States
CityNew Orleans
Period2/02/187/02/18

ASJC Scopus subject areas

  • Artificial Intelligence

Cite this