Automated pulmonary nodule detection via 3D convnets with online sample filtering and hybrid-loss residual learning

Qi Dou, Hao Chen, Yueming Jin, Huangjing Lin, Jing Qin, Pheng Ann Heng

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

131 Citations (Scopus)

Abstract

In this paper, we propose a novel framework with 3D convolutional networks (ConvNets) for automated detection of pulmonary nodules from low-dose CT scans, which is a challenging yet crucial task for lung cancer early diagnosis and treatment. Different from previous standard ConvNets, we try to tackle the severe hard/easy sample imbalance problem in medical datasets and explore the benefits of localized annotations to regularize the learning, and hence boost the performance of ConvNets to achieve more accurate detections. Our proposed framework consists of two stages: (1) candidate screening, and (2) false positive reduction. In the first stage, we establish a 3D fully convolutional network, effectively trained with an online sample filtering scheme, to sensitively and rapidly screen the nodule candidates. In the second stage, we design a hybrid-loss residual network which harnesses the location and size information as important cues to guide the nodule recognition procedure. Experimental results on the public large-scale LUNA16 dataset demonstrate superior performance of our proposed method compared with state-of-the-art approaches for the pulmonary nodule detection task.
Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention − MICCAI 2017 - 20th International Conference, Proceedings
PublisherSpringer Verlag
Pages630-638
Number of pages9
ISBN (Print)9783319661780
DOIs
Publication statusPublished - 1 Jan 2017
Event20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017 - Quebec City, Canada
Duration: 11 Sept 201713 Sept 2017

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10435 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017
Country/TerritoryCanada
CityQuebec City
Period11/09/1713/09/17

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Automated pulmonary nodule detection via 3D convnets with online sample filtering and hybrid-loss residual learning'. Together they form a unique fingerprint.

Cite this