AutoEmb: Automated Embedding Dimensionality Search in Streaming Recommendations

Xiangyu Zhaok, Haochen Liu, Wenqi Fan, Hui Liu, Jiliang Tang, Chong Wang, Ming Chen, Xudong Zheng, Xiaobing Liu, Xiwang Yang

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

45 Citations (Scopus)

Abstract

Deep learning-based recommender systems (DLRSs) often have embedding layers, which are utilized to lessen the dimension of categorical variables (e.g., user/item identifiers) and meaningfully transform them in the low-dimensional space. The majority of existing DLRSs empirically pre-define a fixed and unified dimension for all user/item embeddings. It is evident from recent researches that different embedding sizes are highly desired for different users/items according to their frequency. However, manually selecting embedding sizes in recommender systems can be very challenging due to a large number of users/items and the dynamic nature of their frequency. Thus, in this paper, we propose an AutoML based end-to-end framework (AutoEmb), enabling various embedding dimensions according to the frequency in an automated and dynamic manner. To be specific, we first enhance a typical DLRS to allow various embedding dimensions; then, we propose an end-to-end differentiable framework that can automatically select different embedding dimensions according to user/item frequency; finally, we propose an AutoML based optimization algorithm in a streaming recommendation setting. The experimental results based on widely used benchmark datasets demonstrate the effectiveness of the AutoEmb framework.

Original languageEnglish
Title of host publicationProceedings - 21st IEEE International Conference on Data Mining, ICDM 2021
EditorsJames Bailey, Pauli Miettinen, Yun Sing Koh, Dacheng Tao, Xindong Wu
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages896-905
Number of pages10
ISBN (Electronic)9781665423984
DOIs
Publication statusPublished - 2021
Event21st IEEE International Conference on Data Mining, ICDM 2021 - Virtual, Online, New Zealand
Duration: 7 Dec 202110 Dec 2021

Publication series

NameProceedings - IEEE International Conference on Data Mining, ICDM
Volume2021-December
ISSN (Print)1550-4786

Conference

Conference21st IEEE International Conference on Data Mining, ICDM 2021
Country/TerritoryNew Zealand
CityVirtual, Online
Period7/12/2110/12/21

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'AutoEmb: Automated Embedding Dimensionality Search in Streaming Recommendations'. Together they form a unique fingerprint.

Cite this