AttSum: Joint learning of focusing and summarization with neural attention

Ziqiang Cao, Wenjie Li, Sujian Li, Furu Wei, Yanran Li

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

64 Citations (Scopus)

Abstract

Query relevance ranking and sentence saliency ranking are the two main tasks in extractive query-focused summarization. Previous supervised summarization systems often perform the two tasks in isolation. However, since reference summaries are the trade-off between relevance and saliency, using them as supervision, neither of the two rankers could be trained well. This paper proposes a novel summarization system called AttSum, which tackles the two tasks jointly. It automatically learns distributed representations for sentences as well as the document cluster. Meanwhile, it applies the attention mechanism to simulate the attentive reading of human behavior when a query is given. Extensive experiments are conducted on DUC query-focused summarization benchmark datasets. Without using any hand-crafted features, AttSum achieves competitive performance. We also observe that the sentences recognized to focus on the query indeed meet the query need.

Original languageEnglish
Title of host publicationCOLING 2016 - 26th International Conference on Computational Linguistics, Proceedings of COLING 2016
Subtitle of host publicationTechnical Papers
PublisherAssociation for Computational Linguistics, ACL Anthology
Pages547-556
Number of pages10
ISBN (Print)9784879747020
Publication statusPublished - 1 Jan 2016
Event26th International Conference on Computational Linguistics, COLING 2016 - Osaka, Japan
Duration: 11 Dec 201616 Dec 2016

Publication series

NameCOLING 2016 - 26th International Conference on Computational Linguistics, Proceedings of COLING 2016: Technical Papers

Conference

Conference26th International Conference on Computational Linguistics, COLING 2016
Country/TerritoryJapan
CityOsaka
Period11/12/1616/12/16

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Language and Linguistics
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'AttSum: Joint learning of focusing and summarization with neural attention'. Together they form a unique fingerprint.

Cite this