Attributed subspace clustering

Jing Wang, Linchuan Xu, Feng Tian, Atsushi Suzuki, Changqing Zhang, Kenji Yamanishi

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

3 Citations (Scopus)

Abstract

Existing methods on representation-based subspace clustering mainly treat all features of data as a whole to learn a single self-representation and get one clustering solution. Real data however are often complex and consist of multiple attributes or sub-features, such as a face image has expressions or genders. Each attribute is distinct and complementary on depicting the data. Failing to explore attributes and capture the complementary information among them may lead to an inaccurate representation. Moreover, a single clustering solution is rather limited to depict data, which can often be interpreted from different aspects and grouped into multiple clusters according to attributes. Therefore, we propose an innovative model called attributed subspace clustering (ASC). It simultaneously learns multiple self-representations on latent representations derived from original data. By utilizing Hilbert Schmidt Independence Criterion as a co-regularizing term, ASC enforces that each self-representation is independent and corresponds to a specific attribute. A more comprehensive self-representation is then established by adding these self-representations. Experiments on several benchmark image datasets have demonstrated the effectiveness of ASC not only in terms of clustering accuracy achieved by the integrated representation, but also the diverse interpretation of data, which is beyond what current approaches can offer.

Original languageEnglish
Title of host publicationProceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019
EditorsSarit Kraus
PublisherInternational Joint Conferences on Artificial Intelligence
Pages3719-3725
Number of pages7
ISBN (Electronic)9780999241141
DOIs
Publication statusPublished - 2019
Externally publishedYes
Event28th International Joint Conference on Artificial Intelligence, IJCAI 2019 - Macao, China
Duration: 10 Aug 201916 Aug 2019

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2019-August
ISSN (Print)1045-0823

Conference

Conference28th International Joint Conference on Artificial Intelligence, IJCAI 2019
Country/TerritoryChina
CityMacao
Period10/08/1916/08/19

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Attributed subspace clustering'. Together they form a unique fingerprint.

Cite this