Attention-Based Spatial-Temporal Graph Convolutional Recurrent Networks for Traffic Forecasting

Haiyang Liu, Chunjiang Zhu, Detian Zhang, Qing Li

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

1 Citation (Scopus)

Abstract

Traffic forecasting is one of the most fundamental problems in transportation science and artificial intelligence. The key challenge is to effectively model complex spatial-temporal dependencies and correlations in modern traffic data. Existing methods, however, cannot accurately model both long-term and short-term temporal correlations simultaneously, limiting their expressive power on complex spatial-temporal patterns. In this paper, we propose a novel spatial-temporal neural network framework: Attention-based Spatial-Temporal Graph Convolutional Recurrent Network (ASTGCRN), which consists of a graph convolutional recurrent module (GCRN) and a global attention module. In particular, GCRN integrates gated recurrent units and adaptive graph convolutional networks for dynamically learning graph structures and capturing spatial dependencies and local temporal relationships. To effectively extract global temporal dependencies, we design a temporal attention layer and implement it as three independent modules based on multi-head self-attention, transformer, and informer respectively. Extensive experiments on five real traffic datasets have demonstrated the excellent predictive performance of all our three models with all their average MAE, RMSE and MAPE across the test datasets lower than the baseline methods.

Original languageEnglish
Title of host publicationAdvanced Data Mining and Applications - 19th International Conference, ADMA 2023, Proceedings
EditorsXiaochun Yang, Bin Wang, Heru Suhartanto, Guoren Wang, Jing Jiang, Bing Li, Huaijie Zhu, Ningning Cui
PublisherSpringer Science and Business Media Deutschland GmbH
Pages630-645
Number of pages16
ISBN (Print)9783031466601
DOIs
Publication statusPublished - Nov 2023
Event19th International Conference on Advanced Data Mining and Applications, ADMA 2023 - Shenyang, China
Duration: 21 Aug 202323 Aug 2023

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume14176 LNAI
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference19th International Conference on Advanced Data Mining and Applications, ADMA 2023
Country/TerritoryChina
CityShenyang
Period21/08/2323/08/23

Keywords

  • Attention mechanism
  • Graph convolutional networks
  • Traffic forecasting

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Attention-Based Spatial-Temporal Graph Convolutional Recurrent Networks for Traffic Forecasting'. Together they form a unique fingerprint.

Cite this