Attack resilience of the evolving scientific collaboration network

Xiao Fan Liu, Xiao Ke Xu, Michael Small, Chi Kong Tse

Research output: Journal article publicationJournal articleAcademic researchpeer-review

14 Citations (Scopus)


Stationary complex networks have been extensively studied in the last ten years. However, many natural systems are known to be continuously evolving at the local ("microscopic") level. Understanding the response to targeted attacks of an evolving network may shed light on both how to design robust systems and finding effective attack strategies. In this paper we study empirically the response to targeted attacks of the scientific collaboration networks. First we show that scientific collaboration network is a complex system which evolves intensively at the local level - fewer than 20% of scientific collaborations last more than one year. Then, we investigate the impact of the sudden death of eminent scientists on the evolution of the collaboration networks of their former collaborators. We observe in particular that the sudden death, which is equivalent to the removal of the center of the egocentric network of the eminent scientist, does not affect the topological evolution of the residual network. Nonetheless, removal of the eminent hub node is exactly the strategy one would adopt for an effective targeted attack on a stationary network. Hence, we use this evolving collaboration network as an experimental model for attack on an evolving complex network. We find that such attacks are ineffectual, and infer that the scientific collaboration network is the trace of knowledge propagation on a larger underlying social network. The redundancy of the underlying structure in fact acts as a protection mechanism against such network attacks.
Original languageEnglish
Article numbere26271
JournalPLoS ONE
Issue number10
Publication statusPublished - 20 Oct 2011

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)


Dive into the research topics of 'Attack resilience of the evolving scientific collaboration network'. Together they form a unique fingerprint.

Cite this