TY - GEN
T1 - AtLoc
T2 - 34th AAAI Conference on Artificial Intelligence, AAAI 2020
AU - Wang, Bing
AU - Chen, Changhao
AU - Lu, Chris Xiaoxuan
AU - Zhao, Peijun
AU - Trigoni, Niki
AU - Markham, Andrew
N1 - Publisher Copyright:
Copyright © 2020, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2020
Y1 - 2020
N2 - Deep learning has achieved impressive results in camera localization, but current single-image techniques typically suffer from a lack of robustness, leading to large outliers. To some extent, this has been tackled by sequential (multi-images) or geometry constraint approaches, which can learn to reject dynamic objects and illumination conditions to achieve better performance. In this work, we show that attention can be used to force the network to focus on more geometrically robust objects and features, achieving state-of-the-art performance in common benchmark, even if using only a single image as input. Extensive experimental evidence is provided through public indoor and outdoor datasets. Through visualization of the saliency maps, we demonstrate how the network learns to reject dynamic objects, yielding superior global camera pose regression performance. The source code is avaliable at https://github.com/BingCS/AtLoc.
AB - Deep learning has achieved impressive results in camera localization, but current single-image techniques typically suffer from a lack of robustness, leading to large outliers. To some extent, this has been tackled by sequential (multi-images) or geometry constraint approaches, which can learn to reject dynamic objects and illumination conditions to achieve better performance. In this work, we show that attention can be used to force the network to focus on more geometrically robust objects and features, achieving state-of-the-art performance in common benchmark, even if using only a single image as input. Extensive experimental evidence is provided through public indoor and outdoor datasets. Through visualization of the saliency maps, we demonstrate how the network learns to reject dynamic objects, yielding superior global camera pose regression performance. The source code is avaliable at https://github.com/BingCS/AtLoc.
UR - http://www.scopus.com/inward/record.url?scp=85106556027&partnerID=8YFLogxK
M3 - Conference article published in proceeding or book
AN - SCOPUS:85106556027
T3 - AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
SP - 10393
EP - 10401
BT - AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
PB - AAAI press
Y2 - 7 February 2020 through 12 February 2020
ER -