TY - JOUR
T1 - Assessing the country-level excess all-cause mortality and the impacts of air pollution and human activity during the covid-19 epidemic
AU - Meng, Yuan
AU - Wong, Man Sing
AU - Xing, Hanfa
AU - Kwan, Mei Po
AU - Zhu, Rui
N1 - Funding Information:
Funding: Man Sing Wong thanks the funding support from a grant by the General Research Fund (Grant no. 15603920), the Collaborative Research Fund (Grant no. C7064-18GF), and the Research Institute for Sustainable Urban Development (Grant no. 1-BBWD), the Hong Kong Polytechnic University. Hanfa Xing expresses thanks for the funding support from a grant by the National Natural Science Foundation of China (Grant no. 41971406). Mei-Po Kwan was supported by grants from the Hong Kong Research Grants Council (General Research Fund Grant no. 14605920; Collaborative Research Fund Grant no. C4023-20GF) and a grant from the Research Committee on Research Sustainability of Major Research Grants Council Funding Schemes of the Chinese University of Hong Kong.
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/7/1
Y1 - 2021/7/1
N2 - The impact of Coronavirus Disease 2019 (COVID-19) on cause-specific mortality has been investigated on a global scale. However, less is known about the excess all-cause mortality and air pollution-human activity responses. This study estimated the weekly excess all-cause mortality during COVID-19 and evaluated the impacts of air pollution and human activities on mortality variations during the 10th to 52nd weeks of 2020 among sixteen countries. A SARIMA model was adopted to estimate the mortality benchmark based on short-term mortality during 2015–2019 and calculate excess mortality. A quasi-likelihood Poisson-based GAM model was further applied for air pollution/human activity response evaluation, namely ground-level NO2 and PM2.5 and the visit frequencies of parks and workplaces. The findings showed that, compared with COVID-19 mortality (i.e., cause-specific mortality), excess all-cause mortality changed from −26.52% to 373.60% during the 10th to 52nd weeks across the sixteen countries examined, revealing higher excess all-cause mortality than COVID-19 mortality in most countries. For the impact of air pollution and human activities, the average country-level relative risk showed that one unit increase in weekly NO2, PM2.5, park visits and workplace visits was associated with approximately 1.54% increase and 0.19%, 0.23%, and 0.23% decrease in excess all-cause mortality, respectively. Moreover, compared with the impact on COVID-19 mortality, the relative risks of weekly NO2 and PM2.5 were lower, and the relative risks of weekly park and workplace visits were higher for excess all-cause mortality. These results suggest that the estimation based on excess all-cause mortality reduced the potential impact of air pollution and enhanced the influence of human activities compared with the estimation based on COVID-19 mortality.
AB - The impact of Coronavirus Disease 2019 (COVID-19) on cause-specific mortality has been investigated on a global scale. However, less is known about the excess all-cause mortality and air pollution-human activity responses. This study estimated the weekly excess all-cause mortality during COVID-19 and evaluated the impacts of air pollution and human activities on mortality variations during the 10th to 52nd weeks of 2020 among sixteen countries. A SARIMA model was adopted to estimate the mortality benchmark based on short-term mortality during 2015–2019 and calculate excess mortality. A quasi-likelihood Poisson-based GAM model was further applied for air pollution/human activity response evaluation, namely ground-level NO2 and PM2.5 and the visit frequencies of parks and workplaces. The findings showed that, compared with COVID-19 mortality (i.e., cause-specific mortality), excess all-cause mortality changed from −26.52% to 373.60% during the 10th to 52nd weeks across the sixteen countries examined, revealing higher excess all-cause mortality than COVID-19 mortality in most countries. For the impact of air pollution and human activities, the average country-level relative risk showed that one unit increase in weekly NO2, PM2.5, park visits and workplace visits was associated with approximately 1.54% increase and 0.19%, 0.23%, and 0.23% decrease in excess all-cause mortality, respectively. Moreover, compared with the impact on COVID-19 mortality, the relative risks of weekly NO2 and PM2.5 were lower, and the relative risks of weekly park and workplace visits were higher for excess all-cause mortality. These results suggest that the estimation based on excess all-cause mortality reduced the potential impact of air pollution and enhanced the influence of human activities compared with the estimation based on COVID-19 mortality.
KW - Air pollution
KW - COVID-19 mortality
KW - Excess mortality
KW - Human activities
KW - NO
KW - PM
UR - http://www.scopus.com/inward/record.url?scp=85108624867&partnerID=8YFLogxK
U2 - 10.3390/ijerph18136883
DO - 10.3390/ijerph18136883
M3 - Journal article
C2 - 34206915
AN - SCOPUS:85108624867
SN - 1661-7827
VL - 18
JO - International Journal of Environmental Research and Public Health
JF - International Journal of Environmental Research and Public Health
IS - 13
M1 - 6883
ER -