Abstract
Rapidly morphological and socioeconomic changes have accelerated urbanization process and urban land use transformation in China. Megacities comprise clusters of urban cities and exhibit both newly formed and well-developed urban land use development beyond administrative boundaries. It is necessary to distinguish changing effects of spatial-varying driving factors on newly formed urban land uses from well-developed built-up areas in megacities. This study proposed a multi-spatial urbanization framework to quantify region-level socioeconomics, cluster-level ecological morphologies, and grid-level urban functional morphologies. A three-level Bayesian hierarchical model was developed to investigate the impacts of multi-spatial driving factors on urban land use transformation in megacities. The study period focused on the urbanization process between 2000 and 2018 in Guangdong-Hong Kong-Macao Greater Bay Area (GBA). Results revealed that compared with well-developed urban built-up land, changing impacts of three-level driving factors in urban land use transformation could be captured based on the proposed Bayesian hierarchical model. Region-level total population were associated with increasing possibilities in forming new residential land than the well-developed ones in 35 districts/counties/cities in GBA. Cluster-level ecological attributes with higher proportion, lower edge density of urban built areas, and lower-degree ecological complexity showed increasing probability on newly formed industrial and public land. Grid-level urban functional factors including public transportation density and shopping/dining distribution exhibited significantly decreasing probability (coefficients: -2.12 to -0.51) on contributing newly formed land uses compared with the well-developed areas, whereas business/industry distribution represented higher (coefficients: 0.99 and 0.15) and lower probabilities (coefficient: -0.22) of forming industrial/public land and residential land separately. This research shows a new attempt to distinguish multi-spatial morphological and socioeconomic effects in urban land use transformation in megacities.
| Original language | English |
|---|---|
| Journal | Geo-Spatial Information Science |
| DOIs | |
| Publication status | Published - 2023 |