Approximation with CNNs in Sobolev Space: with Applications to Classification

Guohao Shen, Yuling Jiao, Yuanyuan Lin, Jian Huang

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

6 Citations (Scopus)

Abstract

We derive a novel approximation error bound with an explicit prefactor for Sobolev-regular functions using deep convolutional neural networks (CNNs). The bound is non-asymptotic in terms of the network depth and filter lengths, in a rather flexible way. For Sobolev-regular functions which can be embedded into the Hölder space, the prefactor of our error bound depends on the ambient dimension polynomially instead of exponentially as in most existing results, which is of independent interest. We also establish a new approximation result when the target function is supported on an approximate lower-dimensional manifold. We apply our results to establish non-asymptotic excess risk bounds for classification using CNNs with convex surrogate losses, including the cross-entropy loss, the hinge loss, the logistic loss, the exponential loss and the least squares loss. We show that the classification methods with CNNs can circumvent the curse of dimensionality if input data is supported on a neighborhood of a low-dimensional manifold.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
EditorsS. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh
PublisherNeural information processing systems foundation
Number of pages13
ISBN (Electronic)9781713871088
Publication statusPublished - 2022
Event36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans, United States
Duration: 28 Nov 20229 Dec 2022

Publication series

NameAdvances in Neural Information Processing Systems
Volume35
ISSN (Print)1049-5258

Conference

Conference36th Conference on Neural Information Processing Systems, NeurIPS 2022
Country/TerritoryUnited States
CityNew Orleans
Period28/11/229/12/22

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Approximation with CNNs in Sobolev Space: with Applications to Classification'. Together they form a unique fingerprint.

Cite this