Applying two-level reinforcement ranking in query-oriented multidocument summarization

Furu Wei, Wenjie Li, Qin Lu, Yanxiang He

Research output: Journal article publicationJournal articleAcademic researchpeer-review

9 Citations (Scopus)


Sentence ranking is the issue of most concern in document summarization today. While traditional featurebased approaches evaluate sentence significance and rank the sentences relying on the features that are particularly designed to characterize the different aspects of the individual sentences, the newly emerging graphbased ranking algorithms (such as the PageRank-like algorithms) recursively compute sentence significance using the global information in a text graph that links sentences together. In general, the existing PageRank-like algorithms can model well the phenomena that a sentence is important if it is linked by many other important sentences. Or they are capable of modeling the mutual reinforcement among the sentences in the text graph. However, when dealing with multidocument summarization these algorithms often assemble a set of documents into one large file. The document dimension is totally ignored. In this article we present a framework to model the two-level mutual reinforcement among sentences as well as documents. Under this framework we design and develop a novel ranking algorithm such that the document reinforcement is taken into account in the process of sentence ranking. The convergence issue is examined. We also explore an interesting and important property of the proposed algorithm. When evaluated on the DUC 2005 and 2006 query-oriented multidocument summarization datasets, significant results are achieved.
Original languageEnglish
Pages (from-to)2119-2131
Number of pages13
JournalJournal of the American Society for Information Science and Technology
Issue number10
Publication statusPublished - 1 Oct 2009

ASJC Scopus subject areas

  • Software
  • Information Systems
  • Human-Computer Interaction
  • Computer Networks and Communications
  • Artificial Intelligence


Dive into the research topics of 'Applying two-level reinforcement ranking in query-oriented multidocument summarization'. Together they form a unique fingerprint.

Cite this