Abstract
Determination of initial process parameters for injection molding is a highly skilled job and based on skilled operator's "know-how" and intuitive sense acquired through long-term experience rather than a theoretical and analytical approach. Facing with the global competition, the current trial-and-error practice becomes inadequate. In this paper, application of artificial neural network and fuzzy logic in a case-based system for initial process parameter setting of injection molding is described. Artificial neural network was introduced in the case adaptation while fuzzy logic was employed in the case indexing and similarity analysis. A computer-aided system for the determination of initial process parameter setting for injection molding based on the proposed techniques was developed and validated in a simulation environment. The preliminary validation tests of the system have indicated that the system can determine a set of initial process parameters for injection molding quickly without relying on experienced molding personnel, from which good quality molded parts can be produced.
Original language | English |
---|---|
Pages (from-to) | 165-176 |
Number of pages | 12 |
Journal | Journal of Intelligent Manufacturing |
Volume | 13 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Jun 2002 |
Keywords
- Artificial neural network
- Case-based reasoning
- Fuzzy logic
- Initial process parameter setting of injection molding
ASJC Scopus subject areas
- Software
- Industrial and Manufacturing Engineering
- Artificial Intelligence