Anomalous Hall effect in quarternary Heusler-type Ni50Mn17Fe8Ga25melt-spun ribbons

Zhiyong Zhu, Siu Wing Or, Guangheng Wu

Research output: Journal article publicationJournal articleAcademic researchpeer-review

15 Citations (Scopus)

Abstract

The anomalous Hall effect (AHE) in quarternary Heusler-type Ni50Mn17Fe8Ga25melt-spun ribbons is investigated. Experimental correlation between saturated anomalous Hall resistivity (ρAMS) and longitudinal resistivity (ρxx) is achieved for the low-temperature martensitic phase and the high-temperature austenitic phase as ρAMS∞ ρxxn=4.2 and ρAMS∞ ρxxn=2.1, respectively. The unexpectedly large exponent of n=4.2 in the martensitic phase is found to contradict the traditional theory of AHE with n=1-2, but it can be explained by a side-jump model beyond the short-range limit as a result of the intermediate-range spin-dependent electron scattering by relatively large Mn-rich clusters instead. The restoration of the exponent back to a normal value of n=2.1 in the austenitic phase is ascribed to the domination of the electron scattering by phonons, compared to that by the Mn-rich clusters, at elevated temperatures and with phonon softening in the transverse-acoustic TA2mode.
Original languageEnglish
Article number032503
JournalApplied Physics Letters
Volume95
Issue number3
DOIs
Publication statusPublished - 31 Jul 2009

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'Anomalous Hall effect in quarternary Heusler-type Ni50Mn17Fe8Ga25melt-spun ribbons'. Together they form a unique fingerprint.

Cite this