Analysis of orientation and tensor properties of airborne fibrous particle flow

Ke Sun, Lin Lu, Yu Jiang

Research output: Journal article publicationJournal articleAcademic researchpeer-review

1 Citation (Scopus)

Abstract

Purpose: The purpose of this paper is to study the effect of particle shapes (spherical particle and nonspherical fiber) on their orientation distributions in indoor environment. Design/methodology/approach: This paper adopted a particle model to predict the fibrous particle flow and distribution, and analyzed the orientation distributions of nonspherical fiber particles and spherical particles in airflows like indoor places. Fokker-Planck model was employed to solve the orientation behavior of nonspherical fiber particles. Findings: The simulation results discover that the nonspherical airborne fiber particles have very different characteristics and behaviors and their orientation distributions are totally different from the uniform distribution of spherical particles. The investigation of the particle orientation tensor and orientation strength indicates that the airflow field becomes more anisotropic due to the suspended fibers. The airborne fiber particles increase the viscosity of the room airflow due to the fiber induced additional viscosity. Originality/value: Orientation tensor, strength and additional viscosity in fibrous flow are seldom investigated indoor. This research reveals that the particle shape has to be considered in the analysis of particle transport and distribution in indoor places as most suspended indoor particles are nonspherical.
Original languageEnglish
Pages (from-to)1795-1802
Number of pages8
JournalInternational Journal of Numerical Methods for Heat and Fluid Flow
Volume24
Issue number8
DOIs
Publication statusPublished - 1 Jan 2014

Keywords

  • Air flow
  • Anisotropic property
  • Fibrous particle
  • Orientation distribution
  • Tensor analysis

ASJC Scopus subject areas

  • Mechanics of Materials
  • Mechanical Engineering
  • Computer Science Applications
  • Applied Mathematics

Cite this