Analysis of Key Equations in Two-layer Zone Model and Application with Symbolic Mathematics in Fire Safety Engineering

Wan Ki Chow, Lan Meng

Research output: Journal article publicationReview articleAcademic researchpeer-review

9 Citations (Scopus)

Abstract

There are two objectives in this paper on applying fire modelling techniques for designing fire safety provisions with symbolic mathematics. The first is to review key equations for a two-layer zone model and simplification to a simpler model. There are eleven equations on the mass, volume, temperature, density and internal energy for the upper hot layer and lower cool layer; and the pressure of the compartment. In addition, there are seven constraints and so only four equations are required to be solved. By following the assumptions made in the ASET type of two-layer zone model, these four equations can be further reduced to only two ordinary differential equations. Both the ASET model itself and its modification to FIRM in a compartment with a vertical vent were considered. The second objective is to solve the two ordinary differential equations in the simplified model by symbolic mathematics. The advantages of using symbolic mathematics are discussed. It is proposed that symbolic mathematics is suitable for use by the Authority on assessing fire safety design based on performance-based fire codes where fire modelling technique has to be used.
Original languageEnglish
Pages (from-to)97-124
Number of pages28
JournalJournal of Fire Sciences
Volume22
Issue number2
DOIs
Publication statusPublished - 1 Jan 2004

Keywords

  • Fire safety engineering
  • Symbolic mathematics
  • Zone model

ASJC Scopus subject areas

  • Safety, Risk, Reliability and Quality
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Analysis of Key Equations in Two-layer Zone Model and Application with Symbolic Mathematics in Fire Safety Engineering'. Together they form a unique fingerprint.

Cite this