An RSSI classification and tracing algorithm to improve trilateration-based positioning

Yong Shi, Wen Zhong Shi, Xintao Liu, Xianjian Xiao

Research output: Journal article publicationLetterAcademic researchpeer-review

11 Citations (Scopus)

Abstract

Received signal strength indicator (RSSI)-based positioning is suitable for large-scale applications due to its advantages of low cost and high accuracy. However, it suffers from low stability because RSSI is easily blocked and easily interfered with by objects and environmental effects. Therefore, this paper proposed a tri-partition RSSI classification and its tracing algorithm as an RSSI filter. The proposed filter shows an available feature, where small test RSSI samples gain a low deviation of less than 1 dBm from a large RSSI sample collected about 10 min, and the sub-classification RSSIs conform to normal distribution when the minimum sample count is greater than 20. The proposed filter also offers several advantages compared to the mean filter, including lower variance range with an overall range of around 1 dBm, 25.9% decreased sample variance, and 65% probability of mitigating RSSI left-skewness. We experimentally confirmed the proposed filter worked in the path-loss exponent fitting and location computing, and a 4.45-fold improvement in positioning stability based on the sample standard variance, and positioning accuracy improved by 20.5% with an overall error of less than 1.46 m.

Original languageEnglish
Article number4244
Pages (from-to)1-17
Number of pages17
JournalSensors (Switzerland)
Volume20
Issue number15
DOIs
Publication statusPublished - 1 Aug 2020

Keywords

  • Accuracy
  • RSSI classification
  • RSSI filter
  • Stability
  • Trilateral indoor positioning

ASJC Scopus subject areas

  • Analytical Chemistry
  • Information Systems
  • Atomic and Molecular Physics, and Optics
  • Biochemistry
  • Instrumentation
  • Electrical and Electronic Engineering

Cite this