An mRMR-SVM Approach for Opto-Fluidic Microorganism Classification

Jiawen Luo, Aiqun Liu, Peng Huat Yap, Bo Liedberg, Wee Ser

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

4 Citations (Scopus)

Abstract

The detection of microorganisms is important in numerous applications such as water quality monitoring, blood analysis, and food testing. The conventional detection methods are tedious and labour-intensive. Establish methods involve culturing, counting and identification of the pathogen by an experienced technician which typically can take several days. The use of opto-fluidic technology to capture microorganism images offers 0 route to reduce the overall assay time. However, the detection still requires a trained technician. This paper proposes an image processing method that can be used to classify microorganism images captured by an opto-fluidic set up in an automatic manner. The proposed algorithm incorporates some of the features used in other microorganism image detection methods and proposes two new features-Entropy of Histogram of Oriented Gradients (HOG) and the filtered intensities. In addition, we propose to apply the minimal-Redundancy-Maximal-Relevance (mRMR) criterion to select and rank these features. The probability and joint probability distribution functions of the mRMR are estimated using a Gaussian model and the Kernel Density Estimation model. The performance of the proposed method was validated using SVM and data collected from an experimental setup. The results show that our proposed method outperforms existing methods and is capable of achieving a classification accuracy up to 95.8%.

Original languageEnglish
Title of host publication40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages666-669
Number of pages4
ISBN (Electronic)9781538636466
DOIs
Publication statusPublished - 26 Oct 2018
Externally publishedYes
Event40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018 - Honolulu, United States
Duration: 18 Jul 201821 Jul 2018

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2018-July
ISSN (Print)1557-170X

Conference

Conference40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
Country/TerritoryUnited States
CityHonolulu
Period18/07/1821/07/18

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'An mRMR-SVM Approach for Opto-Fluidic Microorganism Classification'. Together they form a unique fingerprint.

Cite this