An investigation of softening laws and fracture toughness of slag-based geopolymer concrete and mortar

Yao Ding, Yu Lei Bai, Jian Guo Dai, Cai Jun Shi

Research output: Journal article publicationJournal articleAcademic researchpeer-review

1 Citation (Scopus)

Abstract

This paper aimed to determine the softening laws and fracture toughness of slag-based geopolymer (SG) concrete and mortar (SGC and SGM) as compared to those of Portland cement (PC) concrete and mortar (PCC and PCM). Using three-point bending (TPB) tests, the load vs. mid-span displacement, crack mouth opening displacement, and crack tip opening displacement curves (P-d, P-CMOD, and P-CTOD curves) were all recorded. Bilinear softening laws of the PC and SG series were determined by inverse analysis. Furthermore, the cohesive toughness was predicted using an analytical fracture model. The cohesive toughness obtained by experimental study was consistent with that predicted by analytical method, proving the correctness of the tension softening law obtained from inverse analysis. In addition, both initial and unstable fracture toughness values of SG mortar were lower than those of PC mortar given the same compressive strength. Moreover, the initial fracture toughness of SG concrete was generally lower than that of PC concrete, whereas the unstable fracture toughness exhibited an opposite trend.

Original languageEnglish
Article number5200
Pages (from-to)1-15
Number of pages15
JournalMaterials
Volume13
Issue number22
DOIs
Publication statusPublished - 2 Nov 2020

Keywords

  • Concrete
  • Fracture toughness
  • Mortar
  • Slag-based geopolymer
  • Softening law
  • TPB test

ASJC Scopus subject areas

  • Materials Science(all)

Cite this