An interactive tri-level multi-energy management strategy for heterogeneous multi-microgrids

Yingping Cao, Bin Zhou, Siu Wing Or, Ka Wing Chan, Nian Liu, Kuan Zhang

Research output: Journal article publicationJournal articleAcademic researchpeer-review

7 Citations (Scopus)

Abstract

This paper proposes a multi-level multi-energy management framework for the coordinated and interactive operation of heterogeneous multi-microgrids (MMGs) based on many-criteria optimality. With the proposed framework, the highly nonlinear and complex MMG multi-energy management (MMGMEM) problem is formulated into tri-level scheduling subproblems with multi-energy couplings and multi-level interactions, in which the multi-energy trading with energy networks and multi-energy couplings within MGs are optimized in the upper and middle level, and a middle level is added to correct scheduling decisions of the upper level for coordinating the MMG multi-energy sharing. Then, a multi-step matrix decomposition technique is developed to decompose the high dimensional multi-energy coupling matrix of MMGs into the sum of three linear and sparse submatrices for improving the computation efficiency and scalability. Furthermore, a many-criteria decision making (MCDM) model is proposed for the multi-energy sharing problem to achieve an optimum tradeoff in which all microgrids (MGs) can benefit from electricity-gas exchanges, and an evolutionary many-objective optimization based on hyperplane transformation algorithm is used to solve the MCDM problem. Simulation results verify that the proposed framework can achieve a cost saving for each MG (over 19%), and validate its scalability in solving large-scale MMGMEM problems.

Original languageEnglish
Article number128716
JournalJournal of Cleaner Production
Volume319
DOIs
Publication statusPublished - 15 Oct 2021

Keywords

  • Many-criteria optimality
  • Multi-energy management
  • Multi-level scheduling
  • Multi-microgrids
  • Renewable energy

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Environmental Science(all)
  • Strategy and Management
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'An interactive tri-level multi-energy management strategy for heterogeneous multi-microgrids'. Together they form a unique fingerprint.

Cite this