Abstract
The recent research on linearization techniques for solving 0-1 quadratic programming problems focuses on providing concise models and tightening constraint bounds. In this paper, we propose a computational enhancement for a linearization technique to make the linearized model much faster to solve. We investigate the computational performance of the proposed approach, by comparing it with other linearization techniques on a class of 0-1 quadratic programming problems. We can further speed up the proposed technique by heuristically tightening the constraint bounds, as demonstrated by solving the uncapacitated single allocation p-hub median problem using the Civil Aeronautics Board data.
Original language | English |
---|---|
Pages (from-to) | 31-41 |
Number of pages | 11 |
Journal | Optimization Letters |
Volume | 6 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Jan 2012 |
Externally published | Yes |
Keywords
- Binary quadratic programming problem
- Hub location problem
- Linearization technique
ASJC Scopus subject areas
- Control and Optimization