TY - GEN
T1 - An Efficient Semismooth Newton Based Algorithm for Convex Clustering
AU - Yuan, Yancheng
AU - Sun, Defeng
AU - Toh, Kim Chuan
PY - 2018
Y1 - 2018
N2 - Clustering is a fundamental problem in unsupervised learning. Popular methods like K-means, may suffer from instability as they are prone to get stuck in its local minima. Recently, the sum-of-norms (SON) model (also known as clustering path), which is a convex relaxation of hierarchical clustering model, has been proposed in (Lindsten et al., 2011) and (Hocking et al., 2011). Although numerical algorithms like alternating direction method of multipliers (ADMM) and alternating minimization algorithm (AMA) have been proposed to solve convex clustering model (Chi & Lange, 2015), it is known to be very challenging to solve large-scale problems. In this paper, we propose a semismooth Newton based augmented Lagrangian method for large-scale convex clustering problems. Extensive numerical experiments on both simulated and real data demonstrate that our algorithm is highly efficient and robust for solving large-scale problems. Moreover, the numerical results also show the superior performance and scalability of our algorithm comparing to existing first-order methods.
AB - Clustering is a fundamental problem in unsupervised learning. Popular methods like K-means, may suffer from instability as they are prone to get stuck in its local minima. Recently, the sum-of-norms (SON) model (also known as clustering path), which is a convex relaxation of hierarchical clustering model, has been proposed in (Lindsten et al., 2011) and (Hocking et al., 2011). Although numerical algorithms like alternating direction method of multipliers (ADMM) and alternating minimization algorithm (AMA) have been proposed to solve convex clustering model (Chi & Lange, 2015), it is known to be very challenging to solve large-scale problems. In this paper, we propose a semismooth Newton based augmented Lagrangian method for large-scale convex clustering problems. Extensive numerical experiments on both simulated and real data demonstrate that our algorithm is highly efficient and robust for solving large-scale problems. Moreover, the numerical results also show the superior performance and scalability of our algorithm comparing to existing first-order methods.
UR - http://www.scopus.com/inward/record.url?scp=85057264119&partnerID=8YFLogxK
M3 - Conference article published in proceeding or book
AN - SCOPUS:85057264119
VL - 13
T3 - 35th International Conference on Machine Learning, ICML 2018
SP - 9085
EP - 9095
BT - 35th International Conference on Machine Learning, ICML 2018
A2 - Krause, Andreas
A2 - Dy, Jennifer
PB - International Machine Learning Society (IMLS)
T2 - 35th International Conference on Machine Learning, ICML 2018
Y2 - 10 July 2018 through 15 July 2018
ER -