Abstract
Recently, a clear long-sought Debye mode (D) in barium titanate (BT) was identified [J. Hlinka, T. Ostapchuk, D. Nuzhnyy, J. Petzelt, P. Kuzel, C. Kadlec, P. Vanek, I. Ponomareva, L. Bellaiche, Phys. Rev. Lett. 101 (2008) 167402] and this mode was shown to originate from the polar coordinate that also generates the so-called Slater mode (S). The inter-relations between the D mode and the normal A1-type phonon modes were studied by those authors using a four-mode phenomenological model. The present work is to offer an atomistic support of their work and to better illustrate the nature of and the couplings between these modes. In addition, we extend the as-obtained insights to the investigation of the nature of the low frequency Raman peaks that were found in18O-substituted strontium titanate (ST) many years ago [M. Itoh, R. Wang, Y. Inaguma, T. Yamaguchi, Y.-J. Shan, T. Nakamura, Phys. Rev. Lett. 82 (1999) 3540]. Thus, our work provides important information on the connections between the lattice dynamics of BT and ST.
Original language | English |
---|---|
Pages (from-to) | 474-477 |
Number of pages | 4 |
Journal | Solid State Communications |
Volume | 151 |
Issue number | 6 |
DOIs | |
Publication status | Published - 1 Mar 2011 |
Keywords
- A. Ferroelectrics
- D. Anharmonicity
- D. Dielectric response
ASJC Scopus subject areas
- Condensed Matter Physics
- General Chemistry
- Materials Chemistry