An Antibacterial and Anti-Oxidative Hydrogel Dressing for Promoting Diabetic Wound Healing and Real-Time Monitoring Wound pH Conditions with a NIR Fluorescent Imaging System

Yuange Zong, Beige Zong, Ruyan Zha, Yi Zhang, Xianghong Li, Yanying Wang, Huaifang Fang, Wing Leung Wong, Chunya Li

Research output: Journal article publicationJournal articleAcademic researchpeer-review

28 Citations (Scopus)

Abstract

The design and synthesis of multifunctional chitosan hydrogels based on polymerized ionic liquid and a near-infrared (NIR) fluorescent probe (PIL-CS) is a promising strategy, which not only prevents the transition from acute to chronic wounds, but also provides prompt measures regarding microenvironmental alterations in chronic wounds. PIL-CS hydrogel can real-time visualize wound pH through in vivo NIR fluorescent imaging and also feature the pH-responsive sustained drug release, such as antioxidant, to eliminate reactive oxygen species (ROS) and to boost diabetic wound healing. PIL-CS hydrogel is specific, sensitive, stable, and reversible in response to pH changes at the wound site. It, therefore, enables real-time monitoring for a dynamic pH change in the microenvironment of irregular wounds. PIL-CS hydrogel is also designed to possess many merits including high water containment and swelling rate, good biocompatibility, electrical conductivity, antifreeze, tissue adhesion, hemostatic performance, and efficient antibacterial activity against MRSA. In vivo studies showed that PIL-CS hydrogel provided fast diabetic wound healing support, promoted vascular endothelial growth factor (VEGF) production, and reduced ROS and tumor necrosis factor (TNF-α) generation. The results support that the hydrogels coupled with NIR fluorescent probes can be an excellent diabetic wound dressing for enhancing and real-time monitoring skin restoration and regeneration.

Original languageEnglish
Article number2300431
JournalAdvanced healthcare materials
Volume12
Issue number24
DOIs
Publication statusPublished - 27 Apr 2023

Keywords

  • antibacterial
  • antioxidant
  • diabetic wound
  • injectable
  • real-time monitoring

ASJC Scopus subject areas

  • Biomaterials
  • Biomedical Engineering
  • Pharmaceutical Science

Fingerprint

Dive into the research topics of 'An Antibacterial and Anti-Oxidative Hydrogel Dressing for Promoting Diabetic Wound Healing and Real-Time Monitoring Wound pH Conditions with a NIR Fluorescent Imaging System'. Together they form a unique fingerprint.

Cite this