An adaptive patient specific deformable registration for breast images of positron emission tomography and magnetic resonance imaging using finite element approach

Cheng Xue, Fuk Hay Tang

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

2 Citations (Scopus)


A patient specific registration model based on finite element method was investigated in this study. Image registration of Positron Emission Tomography (PET) and Magnetic Resonance imaging (MRI) has been studied a lot. Surface-based registration is extensively applied in medical imaging. We develop and evaluate a registration method combine surface-based registration with biomechanical modeling..Four sample cases of patients with PET and MRI breast scans performed within 30 days were collected from hospital. K-means clustering algorithm was used to segment images into two parts, which is fat tissue and neoplasm [2]. Instead of placing extrinsic landmarks on patients body which may be invasive, we proposed a new boundary condition to simulate breast deformation during two screening. Then a three dimensional model with meshes was built. Material properties were assigned to this model according to previous studies. The whole registration was based on a biomechanical finite element model, which could simulate deformation of breast under pressure.

Original languageEnglish
Title of host publicationMedical Imaging 2014
Subtitle of host publicationImage Processing
ISBN (Print)9780819498274
Publication statusPublished - 2014
EventMedical Imaging 2014: Image Processing - San Diego, CA, United States
Duration: 16 Feb 201418 Feb 2014

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
ISSN (Print)1605-7422


ConferenceMedical Imaging 2014: Image Processing
Country/TerritoryUnited States
CitySan Diego, CA


  • Breast deformation
  • Explicit contact analysis
  • Finite element analysis
  • Registration

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Cite this