Abstract
Pursuing active and durable water splitting electrocatalysts is of vital significance for solving the sluggish kinetics of the oxygen evolution reaction (OER) process in energy supply. Herein, theoretical calculations identify that the local distortion-strain effect in amorphous RuTe2 system abnormally sensitizes the Te-pπ coupling capability and enhances the electron-transfer of Ru-sites, in which the excellent inter-orbital p-d transfers determine strong electronic activities for boosting OER performance. Thus, a robust electrocatalyst based on amorphous RuTe2 porous nanorods (PNRs) is successfully fabricated. In the acidic water splitting, a-RuTe2 PNRs exhibit a superior performance, which only require a cell voltage of 1.52 V to reach a current density of 10 mA cm−2. Detailed investigations show that the high density of defects combine with oxygen atoms to form RuOxHy species, which are conducive to the OER. This work offers valuable insights for constructing robust electrocatalysts based on theoretical calculations guided by rational design and amorphous materials.
Original language | English |
---|---|
Article number | 5692 |
Journal | Nature Communications |
Volume | 10 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Dec 2019 |
ASJC Scopus subject areas
- General Chemistry
- General Biochemistry,Genetics and Molecular Biology
- General Physics and Astronomy