TY - JOUR
T1 - Amino-modified mesoporous carbon material for CO2 adsorption in tunnel engineering
T2 - materials characterization and application prospects
AU - Li, Peinan
AU - Zhu, Yujie
AU - Wu, Jun
AU - Zhai, Yixin
AU - Kou, Xiaoyong
AU - Jiang, Xi
N1 - Publisher Copyright:
© 2024 The Authors
PY - 2024/7
Y1 - 2024/7
N2 - Developing efficient materials for capturing and storing CO2 is crucial in addressing the environmental crisis caused by excessive CO2 emissions. This paper presents the synthesis of amino-modified mesoporous carbon materials with high specific surface areas and efficient adsorption capabilities. The materials were synthesized using resol as the carbon source, F127 as the soft template agent, dicyandiamide as the amino-modified material, and a mixture of ethanol and water as the solvent. The structure and morphology of the amino-modified mesoporous carbon materials were characterized using N2 adsorption/desorption, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The CO2 adsorption performance and mechanism of the materials were also investigated. The potential application of amino-modified mesoporous carbon materials in carbon capture technology, specifically in shield tunnels, was discussed. The results showed that the amino-modified mesoporous carbon materials exhibited a large surface area (656 m2/g), a highly ordered mesoscopic structure (P6mm space group), and high nitrogen content, which resulted in excellent CO2 adsorption capability. At 25 ℃, it demonstrated a CO2 adsorption capacity of 2.85 mmol/g, indicating both high adsorption capacity and rapid adsorption rate. Additionally, the material exhibited good selectivity for CO2. Moreover, it is estimated that every 5 g of synthesized amino-modified mesoporous carbon material can adsorb 0.627 g of CO2. The implementation of amino-modified mesoporous carbon materials on the inner surface of all tunnel segments in Beiheng Passageway in Shanghai, China could significantly enhance the daily capacity for CO2 adsorption, reaching an impressive 181,830 kg. This study incorporates CO2 capture and storage materials into tunnel engineering, paving a way towards decarbonizing underground space.
AB - Developing efficient materials for capturing and storing CO2 is crucial in addressing the environmental crisis caused by excessive CO2 emissions. This paper presents the synthesis of amino-modified mesoporous carbon materials with high specific surface areas and efficient adsorption capabilities. The materials were synthesized using resol as the carbon source, F127 as the soft template agent, dicyandiamide as the amino-modified material, and a mixture of ethanol and water as the solvent. The structure and morphology of the amino-modified mesoporous carbon materials were characterized using N2 adsorption/desorption, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The CO2 adsorption performance and mechanism of the materials were also investigated. The potential application of amino-modified mesoporous carbon materials in carbon capture technology, specifically in shield tunnels, was discussed. The results showed that the amino-modified mesoporous carbon materials exhibited a large surface area (656 m2/g), a highly ordered mesoscopic structure (P6mm space group), and high nitrogen content, which resulted in excellent CO2 adsorption capability. At 25 ℃, it demonstrated a CO2 adsorption capacity of 2.85 mmol/g, indicating both high adsorption capacity and rapid adsorption rate. Additionally, the material exhibited good selectivity for CO2. Moreover, it is estimated that every 5 g of synthesized amino-modified mesoporous carbon material can adsorb 0.627 g of CO2. The implementation of amino-modified mesoporous carbon materials on the inner surface of all tunnel segments in Beiheng Passageway in Shanghai, China could significantly enhance the daily capacity for CO2 adsorption, reaching an impressive 181,830 kg. This study incorporates CO2 capture and storage materials into tunnel engineering, paving a way towards decarbonizing underground space.
KW - Amino-modified materials
KW - CO adsorption
KW - Green underground space
KW - Mesoporous carbon
KW - Tunnel engineering
UR - http://www.scopus.com/inward/record.url?scp=85184064715&partnerID=8YFLogxK
U2 - 10.1016/j.cscm.2024.e02940
DO - 10.1016/j.cscm.2024.e02940
M3 - Journal article
AN - SCOPUS:85184064715
SN - 2214-5095
VL - 20
JO - Case Studies in Construction Materials
JF - Case Studies in Construction Materials
M1 - e02940
ER -