Alternate weibit-based model for assessing green transport systems with combined mode and route travel choices

Songyot Kitthamkesorn, Anthony Chen

Research output: Journal article publicationJournal articleAcademic researchpeer-review

18 Citations (Scopus)

Abstract

The promotion of green transport modes is a worthwhile and sustainable approach to change transport mode shares and to contribute to healthier travel choices. In this paper, we provide an alternate weibit-based model for the combined modal split and traffic assignment (CMSTA) problem that explicitly considers both similarities and heterogeneous perception variances under congestion. Instead of using the widely-adopted Gumbel distribution, both mode and route choice decisions are derived from random utility theory using the Weibull distributed random errors. At the mode choice level, a nested weibit (NW) model is developed to relax the identical perception variance of the logit model. At the route choice level, the recently developed path-size weibit (PSW) is adopted to handle both route overlapping and route-specific perception variance. Further, an equivalent mathematical programming (MP) formulation is developed for this NW-PSW model as a CMSTA problem under congested networks. Some properties of the proposed models are also rigorously proved. Using this alternate weibit-based NW-PSW model, different go-green strategies are quantitatively evaluated to examine (a) the behavioral modeling of travelers’ mode shift between the private motorized mode and go-green modes and (b) travelers’ route choice with consideration of both non-identical perception variance and route overlapping. The results reveal that mode shares and route choices from the NW-PSW model can better reflect the changes in model parameters and in network characteristics than the traditional logit and extended logit models.
Original languageEnglish
Pages (from-to)291-310
Number of pages20
JournalTransportation Research Part B: Methodological
Volume103
DOIs
Publication statusPublished - 1 Sep 2017

Keywords

  • Combined modal split and traffic assignment problem
  • Mathematical program
  • Nested weibit
  • Path-size weibit

ASJC Scopus subject areas

  • Transportation
  • Civil and Structural Engineering

Cite this