Abstract
cis-Dioxoruthenium(VI) complexes, [Cn*(CF3CO2)Ru(VI)O2]ClO4(1) (Cn* = 1,4,7-trimethyl-1,4,7-triazacyclononane) and cis-[(Tet-Me6)Ru(VI)O2](ClO4)2(2) (Tet-Me6= N,N,N',N'-tetramethyl-3,6-dimethyl-3,6-diazaoctane-1,8-diamine), oxidize disubstituted alkynes to 1,2-diketones selectively in good to excellent yields under ambient conditions. The reactions proceed via the formation of dark blue [(Cn*)(CF3CO2)Ru(IV)OC2R1R2O]+intermediates, which display a characteristic UV-visible absorption band at 550-680 nm. With bis(trimethylsilyl)acetylene as substrate and 1 as the oxidant, the intermediate was isolated and structurally characterized by X-ray crystallography as a [3 + 2] cycloadduct. The kinetics of the cycloaddition of 1 with various substituted trimethylsilylacetylenes has been studied by stopped-flow spectrophotometry. With the exception of bis(trimethylsilyl)acetylene, the second-order rate constants were found to vary over a range of less than an order of magnitude irrespective of a 2.3 eV change of the calculated I(p) of the alkynes; therefore, a rate-limiting single electron-transfer mechanism is unlikely. The participation of oxirene (oxene insertion) and metallaoxetene ([2 + 2] cycloaddition) intermediates appears to be implausible based on product analysis. A linear Hammett correlation was established using σ+and σ(jj)(G) parameters for the cycloaddition of 1 with para-substituted aryl trimethylsilylacetylenes, and the rate-limiting vinyl radical intermediate formation is proposed.
Original language | English |
---|---|
Pages (from-to) | 11380-11392 |
Number of pages | 13 |
Journal | Journal of the American Chemical Society |
Volume | 122 |
Issue number | 46 |
DOIs | |
Publication status | Published - 22 Nov 2000 |
Externally published | Yes |
ASJC Scopus subject areas
- Catalysis
- General Chemistry
- Biochemistry
- Colloid and Surface Chemistry