Aggregation-Induced Absorption Enhancement for Deep Near-Infrared II Photoacoustic Imaging of Brain Gliomas In Vivo

Yajing Liu, Huanhuan Liu, Huixiang Yan, Yingchao Liu, Jinsen Zhang, Wenjun Shan, Puxiang Lai, Honghui Li, Lei Ren, Zijing Li, Liming Nie

Research output: Journal article publicationJournal articleAcademic researchpeer-review

58 Citations (Scopus)


The delineation of brain gliomas margins still poses challenges to precise imaging and targeted therapy, mainly due to strong light attenuation of the skull and high background interference. With deep penetration and high sensitivity, photoacoustic (PA) imaging (PAI) in the second near-infrared (NIR II) window holds great potential for brain gliomas imaging. Herein, mesoionic dye A1094 encapsulated in Arg-Gly-Asp-modified hepatitis B virus core protein (RGD-HBc) is designed and synthesized for effective NIR II PAI of brain gliomas. An aggregation-induced absorption enhancement mechanism is discovered in vitro and in vivo. It is also demonstrated that A1094@RGD-HBc, with an enhanced absorption in the NIR II window, displays ninefold PA signal amplification in vivo, allowing for precise PAI of the brain gliomas at a depth up to 5.9 mm. In addition, with the application of abovementioned agent, high-resolution PAI and ultrasensitive single photon emission computed tomography images of brain gliomas are acquired with accurate co-localization. Collectively, the results suggest great promise of A1094@RGD-HBc for diagnostic imaging and precise delineation of brain gliomas in clinical applications.

Original languageEnglish
Article number1801615
JournalAdvanced Science
Issue number8
Publication statusPublished - 17 Apr 2019


  • aggregation-induced absorption enhancement
  • brain gliomas
  • deep photoacoustic imaging
  • mesoionic dyes
  • second near-infrared window

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Chemical Engineering(all)
  • Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • Materials Science(all)
  • Engineering(all)
  • Physics and Astronomy(all)

Cite this