TY - GEN
T1 - AFA-PredNet
T2 - 2018 International Joint Conference on Neural Networks, IJCNN 2018
AU - Zhong, Junpei
AU - Cangelosi, Angelo
AU - Zhang, Xinzheng
AU - Ogata, Tetsuya
N1 - Funding Information:
The research was supported by New Energy and Industrial Technology Development Organization (NEDO). A Pytorch
Publisher Copyright:
© 2018 IEEE.
PY - 2018/10/10
Y1 - 2018/10/10
N2 - The predictive processing (PP) hypothesizes that the predictive inference of our sensorimotor system is encoded implicitly in the regularities between perception and action. We propose a neural architecture in which such regularities of active inference are encoded hierarchically. We further suggest that this encoding emerges during the embodied learning process when the appropriate action is selected to minimize the prediction error in perception. Therefore, this predictive stream in the sensorimotor loop is generated in a top-down manner. Specifically, it is constantly modulated by the motor actions and is updated by the bottom-up prediction error signals. In this way, the top-down prediction originally comes from the prior experience from both perception and action representing the higher levels of this hierarchical cognition. In our proposed embodied model, we extend the PredNet Network, a hierarchical predictive coding network, with the motor action units implemented by a multi-layer perceptron network (MLP) to modulate the network top-down prediction. Two experiments, a minimalistic world experiment, and a mobile robot experiment are conducted to evaluate the proposed model in a qualitative way. In the neural representation, it can be observed that the causal inference of predictive percept from motor actions can be also observed while the agent is interacting with the environment.
AB - The predictive processing (PP) hypothesizes that the predictive inference of our sensorimotor system is encoded implicitly in the regularities between perception and action. We propose a neural architecture in which such regularities of active inference are encoded hierarchically. We further suggest that this encoding emerges during the embodied learning process when the appropriate action is selected to minimize the prediction error in perception. Therefore, this predictive stream in the sensorimotor loop is generated in a top-down manner. Specifically, it is constantly modulated by the motor actions and is updated by the bottom-up prediction error signals. In this way, the top-down prediction originally comes from the prior experience from both perception and action representing the higher levels of this hierarchical cognition. In our proposed embodied model, we extend the PredNet Network, a hierarchical predictive coding network, with the motor action units implemented by a multi-layer perceptron network (MLP) to modulate the network top-down prediction. Two experiments, a minimalistic world experiment, and a mobile robot experiment are conducted to evaluate the proposed model in a qualitative way. In the neural representation, it can be observed that the causal inference of predictive percept from motor actions can be also observed while the agent is interacting with the environment.
UR - http://www.scopus.com/inward/record.url?scp=85056521367&partnerID=8YFLogxK
U2 - 10.1109/IJCNN.2018.8489751
DO - 10.1109/IJCNN.2018.8489751
M3 - Conference article published in proceeding or book
AN - SCOPUS:85056521367
T3 - Proceedings of the International Joint Conference on Neural Networks
BT - 2018 International Joint Conference on Neural Networks, IJCNN 2018 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 8 July 2018 through 13 July 2018
ER -