Aerodynamic performance of a nanostructure-induced multistable shell

Shenghui Yi, Lu Shen, Chih Yung Wen, Xiaoqiao He, Jian Lu

Research output: Journal article publicationJournal articleAcademic researchpeer-review


Multistable shells that have the ability to hold more than one stable configuration are promising for adaptive structures, especially for airfoil. In contrast to existing studies on bistable shells, which are well demonstrated by the Venus flytrap plant with the ability to feed itself, this work experimentally studies the aerodynamic response of various stable configurations of a nanostructure-induced multistable shell. This multistable shell is manufactured by using nanotechnology and surface mechanical attrition treatment (SMAT) to locally process nine circular zones in an original flat plate. The aerodynamic responses of eight stable configurations of the developed multistable shell, including four twisted configurations and four untwisted configurations with different cambers, are visually captured and quantitively measured in a wind tunnel. The results clearly demonstrate the feasibility of utilizing different controllable configurations to adjust the aerodynamic performance of the multistable shell.

Original languageEnglish
Article number350
Issue number11
Publication statusPublished - 18 Nov 2021


  • Aerodynamic performance
  • Morphing structure
  • Multistable shell
  • Nanocrystallization

ASJC Scopus subject areas

  • Aerospace Engineering


Dive into the research topics of 'Aerodynamic performance of a nanostructure-induced multistable shell'. Together they form a unique fingerprint.

Cite this