Abstract
In finite element (FE) model updating, regularization methods are required to alter the ill-conditioned system of equations towards a well-conditioned one. The present study addresses the regularization parameter determination when implementing the Tikhonov regularization technique in output-error-based FE model updating. As the output-error-based FE model updating results in a nonlinear least-squares problem which requires iteration for solution, an adaptive strategy that allows varying value of the regularization parameter at different iteration steps is formulated, where the optimal regularization parameter at each iteration step is determined based on the computationally efficient minimum product criterion (MPC). The performance of MPC in output-error-based FE model updating is examined and compared with the commonly used L-curve method (LCM) and the generalized cross validation (GCV) through numerical studies of a truss bridge using noise-free and noise-corrupted modal data. It is shown that MPC is effective and robust in determining the regularization parameter compared with the other two methods, especially when noise-corrupted data are used. The adaptive strategy is more efficient than the fixed strategy that uses a constant value of the regularization parameter throughout the iteration process.
Original language | English |
---|---|
Pages (from-to) | 563-579 |
Number of pages | 17 |
Journal | Mechanical Systems and Signal Processing |
Volume | 23 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Apr 2009 |
Keywords
- Adaptive regularization parameter optimization
- Finite element (FE) model updating
- Minimum product criterion (MPC)
- Tikhonov regularization
ASJC Scopus subject areas
- Control and Systems Engineering
- Signal Processing
- Civil and Structural Engineering
- Aerospace Engineering
- Mechanical Engineering
- Computer Science Applications