Adaptive Popularity Debiasing Aggregator for Graph Collaborative Filtering

Huachi Zhou, Hao Chen, Junnan Dong, Daochen Zha, Chuang Zhou, Xiao Huang

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

16 Citations (Scopus)

Abstract

The graph neural network-based collaborative filtering (CF) models user-item interactions as a bipartite graph and performs iterative aggregation to enhance performance. Unfortunately, the aggregation process may amplify the popularity bias, which impedes user engagement with niche (unpopular) items. While some efforts have studied the popularity bias in CF, they often focus on modifying loss functions, which can not fully address the popularity bias in GNN-based CF models. This is because the debiasing loss can be falsely backpropagated to non-target nodes during the backward pass of the aggregation. In this work, we study whether we can fundamentally neutralize the popularity bias in the aggregation process of GNN-based CF models. This is challenging because 1) estimating the effect of popularity is difficult due to the varied popularity caused by the aggregation from high-order neighbors, and 2) it is hard to train learnable popularity debiasing aggregation functions because of data sparsity. To this end, we theoretically analyze the cause of popularity bias and propose a quantitative metric, named inverse popularity score, to measure the effect of popularity in the representation space. Based on it, a novel graph aggregator named APDA is proposed to learn per-edge weight to neutralize popularity bias in aggregation. We further strengthen the debiasing effect with a weight scaling mechanism and residual connections. We apply APDA to two backbones and conduct extensive experiments on three real-world datasets. The results show that APDA significantly outperforms the state-of-the-art baselines in terms of recommendation performance and popularity debiasing.

Original languageEnglish
Title of host publicationSIGIR 2023 - Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval
PublisherAssociation for Computing Machinery, Inc
Pages7-17
Number of pages11
ISBN (Electronic)9781450394086
DOIs
Publication statusPublished - 19 Jul 2023
Event46th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2023 - Taipei, Taiwan
Duration: 23 Jul 202327 Jul 2023

Publication series

NameSIGIR 2023 - Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval

Conference

Conference46th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2023
Country/TerritoryTaiwan
CityTaipei
Period23/07/2327/07/23

Keywords

  • collaborative filtering
  • graph neural networks
  • popularity bias

ASJC Scopus subject areas

  • Computer Graphics and Computer-Aided Design
  • Information Systems
  • Software

Fingerprint

Dive into the research topics of 'Adaptive Popularity Debiasing Aggregator for Graph Collaborative Filtering'. Together they form a unique fingerprint.

Cite this