Adaptive crawling with cautious users

Xiang Li, Tianyi Pan, Guangmo Tong, Kai Pan

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

Abstract

In Online Social Networks (OSNs), privacy issue is a growing concern as more and more users are sharing their candid personal information and friendships online. One simple yet effective attack aims at private user data is to use socialbots to befriend the users and crawl data from users who accept the attackers' friend requests. With the attackers involving, individual users' preference and habit analysis is available, hence it is easier for the attackers to trick the users and befriend them. To better protect private information, some cautious, high-profile users may refer to their friends' decisions when receiving a friend request. The aim for this paper is to analyze the vulnerability of OSN users under this attack, in a more realistic setting that the high profile users having a different friend request acceptance model. Specifically, despite the existing probabilistic acceptance models, we introduce a deterministic linear threshold acceptance model for the cautious users such that they will only accept friend requests from users sharing at least a certain number of mutual friends with them. The model makes the cautious users harder to befriend with and complicates the attack. Although the new problem with multiple acceptance models is non-submodular and has no performance guarantee in general, we introduce the concept of adaptive submodular ratio and establish an approximation ratio under certain conditions. In addition, our results are also verified by extensive experiments in real-world OSN data sets.

Original languageEnglish
Title of host publicationProceedings - 2019 39th IEEE International Conference on Distributed Computing Systems, ICDCS 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1243-1252
Number of pages10
ISBN (Electronic)9781728125190
DOIs
Publication statusPublished - Jul 2019
Event39th IEEE International Conference on Distributed Computing Systems, ICDCS 2019 - Richardson, United States
Duration: 7 Jul 20199 Jul 2019

Publication series

NameProceedings - International Conference on Distributed Computing Systems
Volume2019-July

Conference

Conference39th IEEE International Conference on Distributed Computing Systems, ICDCS 2019
Country/TerritoryUnited States
CityRichardson
Period7/07/199/07/19

Keywords

  • Adaptive Crawling
  • Adaptive Non-submodular Optimization
  • Online Social Network

ASJC Scopus subject areas

  • Software
  • Hardware and Architecture
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Adaptive crawling with cautious users'. Together they form a unique fingerprint.

Cite this