A wavelet-based structural damage assessment approach with progressively downloaded sensor data

Jian Li, Yunfeng Zhang, Songye Zhu

Research output: Journal article publicationJournal articleAcademic researchpeer-review

7 Citations (Scopus)


This paper presents a wavelet-based on-line damage assessment approach based on the use of progressively transmitted multi-resolution sensor data. In extreme events like strong earthquakes, real-time retrieval of structural monitoring data and on-line damage assessment of civil infrastructures are crucial for emergency relief and disaster assistance efforts such as resource allocation and evacuation route arrangement. Due to the limited communication bandwidth available to data transmission during and immediately after major earthquakes, innovative methods for integrated sensor data transmission and on-line damage assessment are highly desired. The proposed approach utilizes a lifting scheme wavelet transform to generate multi-resolution sensor data, which are transmitted progressively in increasing resolution. Multi-resolution sensor data enable interactive on-line condition assessment of structural damages. To validate this concept, a hysteresis-based damage assessment method, proposed by Iwan for extreme-event use, is selected in this study. A sensitivity study on the hysteresis-based damage assessment method under varying data resolution levels was conducted using simulation data from a six-story steel braced frame building subjected to earthquake ground motion. The results of this study show that the proposed approach is capable of reducing the raw sensor data size by a significant amount while having a minor effect on the accuracy of hysteresis-based damage assessment. The proposed approach provides a valuable decision support tool for engineers and emergency response personnel who want to access the data in real time and perform on-line damage assessment in an efficient manner.
Original languageEnglish
Article number015020
JournalSmart Materials and Structures
Issue number1
Publication statusPublished - 1 Feb 2008
Externally publishedYes

ASJC Scopus subject areas

  • Signal Processing
  • Civil and Structural Engineering
  • Atomic and Molecular Physics, and Optics
  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Electrical and Electronic Engineering


Dive into the research topics of 'A wavelet-based structural damage assessment approach with progressively downloaded sensor data'. Together they form a unique fingerprint.

Cite this