A trilateral weighted sparse coding scheme for real-world image denoising

Jun Xu, Lei Zhang, David Zhang

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

22 Citations (Scopus)

Abstract

Most of existing image denoising methods assume the corrupted noise to be additive white Gaussian noise (AWGN). However, the realistic noise in real-world noisy images is much more complex than AWGN, and is hard to be modeled by simple analytical distributions. As a result, many state-of-the-art denoising methods in literature become much less effective when applied to real-world noisy images captured by CCD or CMOS cameras. In this paper, we develop a trilateral weighted sparse coding (TWSC) scheme for robust real-world image denoising. Specifically, we introduce three weight matrices into the data and regularization terms of the sparse coding framework to characterize the statistics of realistic noise and image priors. TWSC can be reformulated as a linear equality-constrained problem and can be solved by the alternating direction method of multipliers. The existence and uniqueness of the solution and convergence of the proposed algorithm are analyzed. Extensive experiments demonstrate that the proposed TWSC scheme outperforms state-of-the-art denoising methods on removing realistic noise.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2018 - 15th European Conference, 2018, Proceedings
EditorsVittorio Ferrari, Cristian Sminchisescu, Yair Weiss, Martial Hebert
PublisherSpringer-Verlag
Pages21-38
Number of pages18
ISBN (Print)9783030012366
DOIs
Publication statusPublished - 1 Jan 2018
Event15th European Conference on Computer Vision, ECCV 2018 - Munich, Germany
Duration: 8 Sep 201814 Sep 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11212 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference15th European Conference on Computer Vision, ECCV 2018
Country/TerritoryGermany
CityMunich
Period8/09/1814/09/18

Keywords

  • Real-world image denoising
  • Sparse coding

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Cite this