A tractable framework for performance analysis of dense multi-antenna networks

Xianghao Yu, Chang Li, Jun Zhang, Khaled B. Letaief

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

5 Citations (Scopus)


Densifying the network and deploying more antennas at each access point are two principal ways to boost the capacity of wireless networks. However, due to the complicated distributions of random signal and interference channel gains, largely induced by various space-time processing techniques, it is highly challenging to quantitatively characterize the performance of dense multi-antenna networks. In this paper, using tools from stochastic geometry, a tractable framework is proposed for the analytical evaluation of such networks. The major result is an innovative representation of the coverage probability, as an induced ℓ1-norm of a Toeplitz matrix. This compact representation incorporates lots of existing analytical results on single-and multi-antenna networks as special cases, and its evaluation is almost as simple as the single-antenna case with Rayleigh fading. To illustrate its effectiveness, we apply the proposed framework to investigate two kinds of prevalent dense wireless networks, i.e., physical layer security aware networks and millimeter-wave networks. In both examples, in addition to tractable analytical results of relevant performance metrics, insightful design guidelines are also analytically obtained.

Original languageEnglish
Title of host publication2017 IEEE International Conference on Communications, ICC 2017
EditorsMerouane Debbah, David Gesbert, Abdelhamid Mellouk
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781467389990
Publication statusPublished - 21 May 2017
Externally publishedYes
Event2017 IEEE International Conference on Communications, ICC 2017 - Paris, France
Duration: 21 May 201725 May 2017

Publication series

NameIEEE International Conference on Communications
ISSN (Print)1550-3607


Conference2017 IEEE International Conference on Communications, ICC 2017

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Cite this