A tractable framework for coverage analysis of cellular-connected UAV networks

Xianghao Yu, Jun Zhang, Robert Schober, Khaled B. Letaief

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

10 Citations (Scopus)

Abstract

Unmanned aerial vehicles (UAVs) have recently found abundant applications in the public and civil domains. To ensure reliable control and navigation, connecting UAVs to controllers via existing cellular network infrastructure, i.e., ground base stations (GBSs), has been proposed as a promising solution. Nevertheless, it is highly challenging to characterize the communication performance of cellular-connected UAVs, due to their unique propagation conditions. This paper proposes a tractable framework for the coverage analysis of cellular-connected UAV networks, which consists of a new blockage model and an effective approach to handle general fading channels. In particular, a line-of-sight (LoS) ball model is proposed to capture the probabilistic propagation in UAV communication systems, and a tractable expression is derived for the Laplace transform of the aggregate interference with general Nakagami fading. This framework leads to a tractable expression for the coverage probability, which in turn helps to investigate the impact of the GBS density. Specifically, a tight lower bound on the optimal density that maximizes the coverage probability is derived. Numerical results show that the proposed LoS ball model is accurate, and the optimal GBS density decreases when the UAV altitude increases.

Original languageEnglish
Title of host publication2019 IEEE International Conference on Communications Workshops, ICC Workshops 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728123738
DOIs
Publication statusPublished - 20 May 2019
Event2019 IEEE International Conference on Communications Workshops, ICC Workshops 2019 - Shanghai, China
Duration: 20 May 201924 May 2019

Publication series

Name2019 IEEE International Conference on Communications Workshops, ICC Workshops 2019 - Proceedings

Conference

Conference2019 IEEE International Conference on Communications Workshops, ICC Workshops 2019
Country/TerritoryChina
CityShanghai
Period20/05/1924/05/19

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Hardware and Architecture
  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'A tractable framework for coverage analysis of cellular-connected UAV networks'. Together they form a unique fingerprint.

Cite this