A survey on soft subspace clustering

Zhaohong Deng, Kup Sze Choi, Yizhang Jiang, Jun Wang, Shitong Wang

Research output: Journal article publicationJournal articleAcademic researchpeer-review

104 Citations (Scopus)


Subspace clustering (SC) is a promising technology involving clusters that are identified based on their association with subspaces in high-dimensional spaces. SC can be classified into hard subspace clustering (HSC) and soft subspace clustering (SSC). While HSC algorithms have been studied extensively and are well accepted by the scientific community, SSC algorithms are relatively new. However, as they are said to be more adaptable than their HSC counterparts, SSC algorithms have been attracting more attention in recent years. A comprehensive survey of existing SSC algorithms and recent developments in the field are presented in this paper. SSC algorithms have been systematically classified into three main categories: Conventional SSC (CSSC), independent SSC (ISSC), and extended SSC (XSSC). The characteristics of these algorithms are highlighted and potential future developments in the area of SSC are discussed. Through a comprehensive review of SSC, this paper aims to provide readers with a clear profile of existing SSC methods and to foster the development of more effective clustering technologies and significant research in this area.
Original languageEnglish
Pages (from-to)84-106
Number of pages23
JournalInformation Sciences
Publication statusPublished - 20 Jun 2016


  • Entropy weighting
  • Fuzzy C-means/k-means model
  • Fuzzy weighting
  • Mixture model
  • Soft subspace clustering

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Theoretical Computer Science
  • Computer Science Applications
  • Information Systems and Management
  • Artificial Intelligence


Dive into the research topics of 'A survey on soft subspace clustering'. Together they form a unique fingerprint.

Cite this