TY - JOUR
T1 - A study on the influence of breathing phases in intensity-modulated radiotherapy of lung tumours using four-dimensional CT
AU - Wu, Wing Cheung Vincent
AU - Chan, C. L.
AU - Wong, Y. W.
AU - Cuijpers, J. P.
PY - 2010/3/1
Y1 - 2010/3/1
N2 - During gated intensity-modulated radiotherapy (IMRT) treatment for patients with inoperable non-small cell lung cancer (NSCLC), the end-expiration (EE) phase of respiratory is more stable, whereas end-inspiration (EI) spares more normal lung tissue. This study compared the relative plan quality based on dosimetric and biological indices of the planning target volume (PTV) and organs at risk (OARs) between EI and EE in gated IMRT. 16 Stage I NSCLC patients, who were scanned by four-dimensional CT, were recruited and re-planned. An IMRT plan of a prescription dose of 60 Gy per respiratory phase was computed using the iPlan treatment planning system. The heart, spinal cord, both lungs and PTV were outlined. The tumour control probability for the PTV and normal tissue complication probability for all OARs in the EE and EI phases were nearly the same; only the normal tissue complication probability of the heart in EE was slightly lower. Conversely, the conformation number of the PTV, V20 of the left lung, V30 of both lungs, Dmax of the heart and spinal cord, V10 of the heart and D5% of the spinal cord were better in EE, whereas Dmean of the PTV, V20 of the right lung and maximum doses of both lungs were better in EI. No differences reached statistical significance (p<0.05) except Dmax of the spinal cord (p=0.033). Overall, there was no expected clinical impact between EI and EE in the study. However, based on the practicality factor, EI is recommended for patients who can performbreath-hold; otherwise, EE is recommended.
AB - During gated intensity-modulated radiotherapy (IMRT) treatment for patients with inoperable non-small cell lung cancer (NSCLC), the end-expiration (EE) phase of respiratory is more stable, whereas end-inspiration (EI) spares more normal lung tissue. This study compared the relative plan quality based on dosimetric and biological indices of the planning target volume (PTV) and organs at risk (OARs) between EI and EE in gated IMRT. 16 Stage I NSCLC patients, who were scanned by four-dimensional CT, were recruited and re-planned. An IMRT plan of a prescription dose of 60 Gy per respiratory phase was computed using the iPlan treatment planning system. The heart, spinal cord, both lungs and PTV were outlined. The tumour control probability for the PTV and normal tissue complication probability for all OARs in the EE and EI phases were nearly the same; only the normal tissue complication probability of the heart in EE was slightly lower. Conversely, the conformation number of the PTV, V20 of the left lung, V30 of both lungs, Dmax of the heart and spinal cord, V10 of the heart and D5% of the spinal cord were better in EE, whereas Dmean of the PTV, V20 of the right lung and maximum doses of both lungs were better in EI. No differences reached statistical significance (p<0.05) except Dmax of the spinal cord (p=0.033). Overall, there was no expected clinical impact between EI and EE in the study. However, based on the practicality factor, EI is recommended for patients who can performbreath-hold; otherwise, EE is recommended.
UR - http://www.scopus.com/inward/record.url?scp=77749292262&partnerID=8YFLogxK
U2 - 10.1259/bjr/33094251
DO - 10.1259/bjr/33094251
M3 - Journal article
C2 - 19723769
SN - 0007-1285
VL - 83
SP - 252
EP - 256
JO - British Journal of Radiology
JF - British Journal of Radiology
IS - 987
ER -