A study of the BrO and BrO2radicals with vacuum ultraviolet photoelectron spectroscopy

J. M. Dyke, S. D. Gamblin, N. Hooper, E. P.F. Lee, A. Morris, Kam Wah Mok, F. T. Chau

Research output: Journal article publicationJournal articleAcademic researchpeer-review

26 Citations (Scopus)

Abstract

The BrO radical, prepared by the Br+O3reaction, has been investigated by ultraviolet photoelectron spectroscopy. Two vibrationally resolved bands were observed corresponding to the ionizations BrO+(X3Σ-)←BrO(X2Π) and BrO+(a1Δ)←BrO(X2Π). These assignments are supported by the results of complete active space self-consistent field/multireference configuration interaction (CASSCF/MRCI) calculations performed as part of this work. The adiabatic ionization energies of these bands were measured as (10.46±0.02) and (11.21±0.02)eV, respectively. Measurement of the vibrational separations in these bands led to estimates of the vibrational constants in the ionic states of (840±30) cm-1and (880±30) cm-1, and Franck-Condon simulations of the vibrational envelopes gave values of the ionic state bond lengths of (1.635±0.005) and (1.641±0.005) Å for the X3Σ-and a1Δ states of BrO+, respectively. The O+Br2reaction was found to give a band at (10.26±0.02) eV associated with a reaction product. Comparison of the results obtained for the Br+O3reaction showed that it could not be assigned to ionization of BrO. Calculations of the first adiabatic ionization energies and Franck-Condon simulations of the vibrational envelopes of the first photoelectron bands of BrO2and Br2O and their isomers demonstrated that this band corresponds to the first ionization of OBrO, the BrO+2(X1A1)←BrO2(X2B1) ionization. Franck-Condon simulations were performed with the experimental geometry of BrO2(X̃2B1) but with different cationic state geometries. The simulated envelope which most closely matched the experimental envelope gave geometrical parameters of re= 1.6135 Å and 〈OBrO= 117.5° for the ionic state.
Original languageEnglish
Pages (from-to)6262-6274
Number of pages13
JournalJournal of Chemical Physics
Volume112
Issue number14
DOIs
Publication statusPublished - 8 Apr 2000

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Cite this