Abstract
This paper proposes a stochastic user equilibrium assignment model for congested transit networks, together with a solution algorithm. A mathematical programming problem is formulated, that is equivalent to the stochastic user equilibrium assignment model for congested transit system. When the transit link capacity constraints are reached, it is proven that the Lagrange multipliers of the mathematical programming problem are equivalent to the equilibrium passenger overload delays in the congested transit network. The proposed model can simultaneously predict how passengers will choose their optimal routes and estimate the total passenger travel cost in a congested transit network. Numerical examples are used to illustrate the applications of the proposed model.
Original language | English |
---|---|
Pages (from-to) | 351-368 |
Number of pages | 18 |
Journal | Transportation Research Part B: Methodological |
Volume | 33 |
Issue number | 5 |
DOIs | |
Publication status | Published - 1 Jan 1999 |
Keywords
- Congested transit network
- Stochastic user equilibrium
ASJC Scopus subject areas
- Transportation
- Management Science and Operations Research