A response surface methodology based on improved compactly supported radial basis function and its application to rapid optimizations of electromagnetic devices

Siu Lau Ho, S. Y. Yang, G. Z. Ni, H. C. Wong

Research output: Journal article publicationJournal articleAcademic researchpeer-review

20 Citations (Scopus)

Abstract

The compactly supported radial basis function (CS-RBF) is improved and used to design a new response surface model. The model is incorporated into stochastic global optimal methods to develop a fast and efficient global optimal design strategy with the main target to reduce the number of function calls that involve computationally heavy procedures such as, for example, the repetitive usage of finite element analysis which is generally required in solving inverse problems. In order to employ a multistep method to automatically adjust the support of the CS-RBF to realize the "best" tradeoff between computational efficiency and accuracy, a cluster algorithm is proposed to decompose the sample points into a nested sequence of subsets. To validate the proposed algorithm, typical numerical results on two different examples are reported.
Original languageEnglish
Pages (from-to)2111-2117
Number of pages7
JournalIEEE Transactions on Magnetics
Volume41
Issue number6
DOIs
Publication statusPublished - 1 Jun 2005

Keywords

  • Compact support
  • Optimal design
  • Radial basis function
  • Response surface methodology

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'A response surface methodology based on improved compactly supported radial basis function and its application to rapid optimizations of electromagnetic devices'. Together they form a unique fingerprint.

Cite this