A remote sensing method for mapping alpine grasslines based on graph-cut

Licong Liu, Jin Chen, Miaogen Shen, Xuehong Chen, Ruyin Cao, Xin Cao, Xihong Cui, Wei Yang, Xiaolin Zhu, Le Li, Yanhong Tang

Research output: Journal article publicationJournal articleAcademic researchpeer-review

Abstract

Climate change has induced substantial shifts in vegetation boundaries such as alpine treelines and shrublines, with widespread ecological and climatic influences. However, spatial and temporal changes in the upper elevational limit of alpine grasslands (“alpine grasslines”) are still poorly understood due to lack of field observations and remote sensing estimates. In this study, taking the Tibetan Plateau as an example, we propose a novel method for automatically identifying alpine grasslines from multi-source remote sensing data and determining their positions at 30-m spatial resolution. We first identified 2895 mountains potentially having alpine grasslines. On each mountain, we identified a narrow area around the upper elevational limit of alpine grasslands where the alpine grassline was potentially located. Then, we used linear discriminant analysis to adaptively generate from Landsat reflectance features a synthetic feature that maximized the difference between vegetated and unvegetated pixels in each of these areas. After that, we designed a graph-cut algorithm to integrate the advantages of the Otsu and Canny approaches, which was used to determine the precise position of the alpine grassline from the synthetic feature image. Validation against alpine grasslines visually interpreted from a large number of high-spatial-resolution images showed a high level of accuracy (R2,.99 and.98; mean absolute error, 22.6 and 36.2 m, vs. drone and PlanetScope images, respectively). Across the Tibetan Plateau, the alpine grassline elevation ranged from 4038 to 5380 m (5th–95th percentile), lower in the northeast and southeast and higher in the southwest. This study provides a method for remotely sensing alpine grasslines for the first-time at large scale and lays a foundation for investigating their responses to climate change.

Original languageEnglish
Article numbere17005
JournalGlobal Change Biology
Volume30
Issue number1
DOIs
Publication statusPublished - Jan 2024

Keywords

  • alpine grassline
  • climate change
  • edge detection
  • graph-cut
  • Landsat
  • Tibetan Plateau

ASJC Scopus subject areas

  • Global and Planetary Change
  • Environmental Chemistry
  • Ecology
  • General Environmental Science

Fingerprint

Dive into the research topics of 'A remote sensing method for mapping alpine grasslines based on graph-cut'. Together they form a unique fingerprint.

Cite this