TY - GEN
T1 - A PID Controller Approach for Stochastic Optimization of Deep Networks
AU - An, Wangpeng
AU - Wang, Haoqian
AU - Sun, Qingyun
AU - Xu, Jun
AU - Dai, Qionghai
AU - Zhang, Lei
PY - 2018/12/14
Y1 - 2018/12/14
N2 - Deep neural networks have demonstrated their power in many computer vision applications. State-of-the-art deep architectures such as VGG, ResNet, and DenseNet are mostly optimized by the SGD-Momentum algorithm, which updates the weights by considering their past and current gradients. Nonetheless, SGD-Momentum suffers from the overshoot problem, which hinders the convergence of network training. Inspired by the prominent success of proportional-integral-derivative (PID) controller in automatic control, we propose a PID approach for accelerating deep network optimization. We first reveal the intrinsic connections between SGD-Momentum and PID based controller, then present the optimization algorithm which exploits the past, current, and change of gradients to update the network parameters. The proposed PID method reduces much the overshoot phenomena of SGD-Momentum, and it achieves up to 50% acceleration on popular deep network architectures with competitive accuracy, as verified by our experiments on the benchmark datasets including CIFAR10, CIFAR100, and Tiny-ImageNet.
AB - Deep neural networks have demonstrated their power in many computer vision applications. State-of-the-art deep architectures such as VGG, ResNet, and DenseNet are mostly optimized by the SGD-Momentum algorithm, which updates the weights by considering their past and current gradients. Nonetheless, SGD-Momentum suffers from the overshoot problem, which hinders the convergence of network training. Inspired by the prominent success of proportional-integral-derivative (PID) controller in automatic control, we propose a PID approach for accelerating deep network optimization. We first reveal the intrinsic connections between SGD-Momentum and PID based controller, then present the optimization algorithm which exploits the past, current, and change of gradients to update the network parameters. The proposed PID method reduces much the overshoot phenomena of SGD-Momentum, and it achieves up to 50% acceleration on popular deep network architectures with competitive accuracy, as verified by our experiments on the benchmark datasets including CIFAR10, CIFAR100, and Tiny-ImageNet.
UR - https://www.scopus.com/pages/publications/85062879163
U2 - 10.1109/CVPR.2018.00889
DO - 10.1109/CVPR.2018.00889
M3 - Conference article published in proceeding or book
AN - SCOPUS:85062879163
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 8522
EP - 8531
BT - Proceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
PB - IEEE Computer Society
T2 - 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
Y2 - 18 June 2018 through 22 June 2018
ER -