A PID Controller Approach for Stochastic Optimization of Deep Networks

Wangpeng An, Haoqian Wang, Qingyun Sun, Jun Xu, Qionghai Dai, Lei Zhang

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

22 Citations (Scopus)

Abstract

Deep neural networks have demonstrated their power in many computer vision applications. State-of-the-art deep architectures such as VGG, ResNet, and DenseNet are mostly optimized by the SGD-Momentum algorithm, which updates the weights by considering their past and current gradients. Nonetheless, SGD-Momentum suffers from the overshoot problem, which hinders the convergence of network training. Inspired by the prominent success of proportional-integral-derivative (PID) controller in automatic control, we propose a PID approach for accelerating deep network optimization. We first reveal the intrinsic connections between SGD-Momentum and PID based controller, then present the optimization algorithm which exploits the past, current, and change of gradients to update the network parameters. The proposed PID method reduces much the overshoot phenomena of SGD-Momentum, and it achieves up to 50% acceleration on popular deep network architectures with competitive accuracy, as verified by our experiments on the benchmark datasets including CIFAR10, CIFAR100, and Tiny-ImageNet.

Original languageEnglish
Title of host publicationProceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
PublisherIEEE Computer Society
Pages8522-8531
Number of pages10
ISBN (Electronic)9781538664209
DOIs
Publication statusPublished - 14 Dec 2018
Event31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 - Salt Lake City, United States
Duration: 18 Jun 201822 Jun 2018

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
Country/TerritoryUnited States
CitySalt Lake City
Period18/06/1822/06/18

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Cite this