A partition-based recursive approach for finding higher-order polynomial roots using constrained learning neural networks

D.S. Huang, Zheru Chi

Research output: Journal article publicationJournal articleAcademic research

Abstract

提出一种新的基于约束学习神经网络的递推分块方法,来分批(块)求解任意高阶多项式的任意数(小于多项式的阶)个根(包括复根).同时给出了基于多项式中根与系数间的约束关系构造的用于求根的BP网络约束学习算法,提出了对应的学习参数的自适应选择方法.实验结果表明,这种分块神经求根方法,相对传统方法,能够快速有效地获得任意高阶多项式对应的根.
Original languageEnglish
Pages (from-to)1115-1124
Number of pages10
Journal中國科學. E輯 (Science in China. Series E)
Volume33
Issue number12
Publication statusPublished - 2003

Fingerprint

Dive into the research topics of 'A partition-based recursive approach for finding higher-order polynomial roots using constrained learning neural networks'. Together they form a unique fingerprint.

Cite this